

188 Advanced Digital Systems

burst, the overall system design is likely to be easier, because tight DDR timing on the address/
control interface is not required as it would be with a two-word burst QDR device.

As can be readily observed, a QDR device can truly provide four times the bandwidth of a con-
ventional SDR SRAM, but only when the read and write bandwidths are symmetrical. If an applica-
tion requires very high bandwidth for a long set of writes and then the same equivalent bandwidth
for a long read, QDR technology will not provide any real advantage over a DDR SRAM. QDR is
useful in many communications applications where it serves as an in-line buffer or FIFO between
two data processing elements. Such applications exhibit symmetrical bandwidth, because they can-
not store data for long and must rapidly drain data buffer as fast as data is stored to prevent an over-
flow or underflow.

8.5 CONTENT ADDRESSABLE MEMORY

Most types of memory are constructed from an array of data storage locations, each of which is in-
dexed with a unique address. The set of addresses supported by the memory array is a continuous,
linear range from 0 to some upper limit, usually a power of 2. For a memory array size, W, the re-
quired address bus width, N, is determined by rounding up N = log

2

 W to the next whole number.
Therefore, W

≤

 2

N

. Memory arrays usually store sets of data that are accessed in a sequential man-
ner. The basic paradigm is that the microprocessor requests an arbitrary address that has no special
meaning other than the fact that it is a memory index, and the appropriate data is transferred. This
scheme can be modified to implement a lookup table by presenting an index that is not an arbitrary
number but that actually has some inherent meaning. If, for example, a network packet arrives with
an eight-bit identification tag (perhaps a source address), that tag can be used to index into a memory
array to retrieve or store status information about that unique type of packet. Such status information
could help implement a filter, where a flag bit indicates whether packets with certain tags should be
discarded or allowed through. It could also be used to implement a unique counter for each tag to
maintain statistics of how many packets with a particular tag have been observed. As shown in Fig.
8.17, when the packet arrives, its relevant eight-bit tag is used to access a single memory location
that contains a filter bit and a count value that gets incremented and stored back into the memory ar-
ray. This saves logic, because 256 unique counters are not required. Instead, a single +1 adder ac-
complishes the task with the assistance of the memory’s built-in address decoding logic.

Payload
Header

Tag

256 x 16
Memory Array

8-Bit Tag Index
into Lookup Table

+1
Adder

Data Out
[14:0]

Data In
[14:0]

Packet
Input

Packet
Output

Packet
Filter
Logic

Data Out [15]

FIGURE 8.17 Using a memory array as a lookup table.

-Balch.book Page 188 Thursday, May 15, 2003 3:46 PM

High-Performance Memory Technologies 189

Such lookup tables are common in communication systems where decisions are made and statis-
tics gathered according to the unique tags and network addresses present in each packet’s header.
When the size of a tag is bounded at a manageable width, a conventional memory array can be used
to implement a lookup table. However, as tags grow to 16, 32, 64, 128, or more bits, the required
memory size becomes quite impractical. The example in Fig. 8.17 would require 8 GB of memory if
the tag width increased from 8 to 32 bits! If all 2

32

 tag permutations need to be accounted for inde-
pendently, there would be no avoiding a large memory array. However, the majority of such lookup
table applications handle a small fraction of the total set of permutations. The working set of tags
sparsely populates the complete defined set of tags. So the question becomes how to rapidly index
into a memory array with an N-bit tag where the array size is much less than 2

N

.
A

content addressable memory

(CAM) solves this problem with an array of fully associative tags
and optional corresponding data entries as shown in Fig. 8.18. Instead of decoding 2

N

 unique loca-
tions based on an N-bit tag, each CAM entry simultaneously matches its own tag to the one pre-
sented. The entry whose tag matches is the one that presents its associated data at the output and the
one that can have its data modified as well. Alternatively, a CAM may simply return the index of the
matched or winning entry in the array, if the specific device does not have any data associated with
each entry. There is substantial overhead in providing each entry with a unique tag and matching
logic, making CAMs substantially more expensive than conventional memories on a per-bit basis.
Their increased cost is justified in those applications that require rapid searching of large yet
sparsely populated index ranges.

Unlike a conventional memory, a CAM must be managed by the system’s hardware and/or soft-
ware to function properly. The system must load the CAM entries with relevant tags and data. Care
should be taken to keep tags unique, because there is no standard means of resolving the case in
which two entries’ tags match the tag input. Individual CAM implementations may specify how
such conflicts are resolved. Some CAMs handle read/write maintenance functions through the same
interface that tags are presented and matched. Other implementations provide a separate mainte-
nance port. Having a separate maintenance port increases the number of pins on the CAM, adding
complexity to the circuit board wiring, but it may decrease overall system complexity, because main-
tenance logic and data logic paths do not have to be shared.

CAM tags and matching logic can be constructed in either a

binary

or

ternary

manner. A binary
CAM implements a standard tag of arbitrary width and a valid bit. These CAMs are well suited to
situations in which exact tag matches are desired. A ternary CAM doubles the number of tag bits to

Tag
Input

Matched
Data

Search
Successful

Tag Address/DataValid/Match Logic z

Tag Address/DataValid/Match Logic z

Tag Address/DataValid/Match Logic z

Tag Address/DataValid/Match Logic z

FIGURE 8.18 Basic CAM architecture.

-Balch.book Page 189 Thursday, May 15, 2003 3:46 PM

